

Stefan Hirschberg :: Laboratory for Energy Systems Analysis :: Paul Scherrer Institute

Health Risks of Power Generation Technologies

ESREL 2017, Portoroz, Slovenia, 19 June 2017

- Introduction
- Risks of normal operation
- Severe accident risks
- Terrorist threat
- Health risk comparisons
- Conclusions

- Minimization of health impacts is one of the goals of sustainable energy policies.
- High public interest but serious misunderstandings and deficiencies of available analyses.

Questions addressed:

- How large are health effects associated with various electricity generation technologies and fuel cycles?
- How do health risks from normal operation compare with those resulting from accidents and hypothetical terrorist attacks?
- Which are the major limitations of the current estimates?

Reliability Engineering and System Safety 145 (2016) 373-387

Health effects of technologies for power generation: Contributions from normal operation, severe accidents and terrorist threat

Stefan Hirschberg^{a,*}, Christian Bauer^a, Peter Burgherr^a, Eric Cazzoli^b, Thomas Heck^a, Matteo Spada^a, Karin Treyer^a

^a Laboratory for Energy System Analysis, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland ^b Cazzoli Consulting, Villigen, Switzerland

ARTICLE INFO

Comparative risk assessment

Keywords:

Power generation

Normal operation Severe accidents

Terrorist threat

Health effects

Available online 9 October 2015

ABSTRACT

As a part of comprehensive analysis of current and future energy systems we carried out numerous analyses of health effects of a wide spectrum of electricity supply technologies including advanced ones, operating in various countries under different conditions. The scope of the analysis covers full energy chains, i.e. fossil, nuclear and renewable power plants and the various stages of fuel cycles. State-of-the-art methods are used for the estimation of health effects. This paper addresses health effects in terms of reduced life expectancy in the context of normal operation as well as fatalities resulting from severe accidents and potential terrorist attacks. Based on the numerical results and identified patterns a comparative perspective on health effects associated with various electricity generation can be compared with those resulting from severe accidents and hypothetical terrorist attacks. A novel approach to the analysis of terrorist threat against energy infrastructure was developed, implemented and applied to selected energy facilities in various locations. Finally, major limitations of the current approach are identified and recommendations for further work are given.

© 2015 Elsevier Ltd. All rights reserved.

Sustainability Criteria

	Criterion				
z	z RESOURCES				
JENTAL DIMENSIOI	Energy Resources				
	Mineral Resources (Ores)				
	CLIMATE CHANGE				
	IMPACT ON ECOSYSTEMS				
	Impacts from Normal Operation				
	Impacts from Severe Accidents				
NO	WASTES				
/IR(Special Chemical Wastes stored in Underground Depositories				
źш	Medium and High Level Radioactive Wastes to be stored in				
_					
NO I	IMPACTS ON CUSTOMERS				
SNS					
IMI	Employment				
С С	Autonomy of Electricity Generation				
ШO	IMPACTS ON UTILITY				
Ň	Financial Risks				
ŬШ	Operation				
	SECURITY/RELIABILITY OF ENERGY PROVISION				
	Political Threats to Continuity of Energy Service				
	Flexibility and Adaptation				
7	POLITICAL STABILITY AND LEGITIMACY				
0	Potential of Conflicts induced by Energy Systems.				
SNS	Necessity of Participative Decision-making Processes				
M	SOCIAL AND INDIVIDUAL RISKS				
Social D	Expert-based Risk Estimates for Normal Operation				
	Expert-based Risk Estimates for Accidents				
	Perceived Risks				
	Terrorist Threat				
	Effects on the Quality of Landscape				

Sustainability Assessment of Energy Technologies: Risk-relevant Criteria & Indicators (EU-Project NEEDS)

Criterion	Indicator [Unit]		
SOCIAL AND INDIVIDUAL RISKS			
Expert-based Risk Estimates for Normal Operation			
Reduced life expectancy due to normal operation	Mortality due to normal operation [YOLL/kWh]		
Non-fatal illnesses due to normal operation	Morbidity due to normal operation [DALY/kWh]		
Expert-based Risk Estimates for accidents			
Expected health effects from accidents	Expected mortality due to severe accidents [Fatalities/kWh]		
Maximum consequences of accidents	Maximum credible number of fatalities per accident [Fatalities/accident]		
Perceived Risks			
Perceived risk characteristics for normal operation	Subjective health fears due to normal operation [Ordinal scale]		
Perceived risk characteristics for accidents	Psychometric variables such as personal control, catastrophic potential, perceived equity, familiarity [Ordinal scale]		
Terrorist Threat			
Potential of attack	Potential for a successful attack [Ordinal scale]		
Likely potential effects of a successful attack	Expected number of fatalities [Ordinal scale]		
Proliferation	Potential for misuse of technologies and substances within the nuclear energy chain [Ordinal scale]		

Stefan Hirschberg, Laboratory for Energy Systems Analysis, Energy Divisions

RISKS OF NORMAL OPERATION

Air Pollutants and their Major Impacts

Impact category	Pollutant	Effects
Public health –	PM ₁₀ ^a ,	Reduction in life expectancy due to acute and
mortality	SO ₂ ,	chronic mortality (all-cause mortality used,
	Sulfates,	major associations for cardiopulmonary and
	Nitrates	lung cancer mortality)
Public health –	PM ₁₀ ,	respiratory hospital admissions
morbidity	Sulfates, restricted activity days	
	Nitrates	cerebrovascular hospital admissions
		congestive heart failure
		cases of bronchodilator usage
		cases of chronic bronchitis
		cases of chronic cough in children
		cough in asthmatics
		lower respiratory symptoms
Crops	SO ₂	Yield change for wheat, barley, rye, oats,
		potato, sugar beet, cotton, rice, rape,
<u> </u>		soyabean, vegetables

^a PM₁₀ are particulates with an aerodynamic diameter $< 10 \ \mu m$

ntor	Impact Catogory	Pollutant	for
SCHERRER INSTITUT	Major Health	Exposure-Response Fu	unctions

Receptor	Impact Category	Pollutant	fer		
ADULTS	•				
	Restricted activity days	PM ₁₀ ,	0.025		
		Nitrates,	0.025		
		Sulfates	0.042		
	Chronic bronchitis	PM ₁₀ ,	2.5E-5		
		Nitrates,	2.5E-5		
		Sulfates	3.9E-5		
ENTIRE POPULATION					
	Acute mortality (YOLL)	SO ₂	5.4E-6		
	Chronic mortality (YOLL)	PM ₁₀ ,	1.57E-4		
		Nitrates,	1.57E-4		
	YOLL: Years of Life Lost	PM _{2.5} ,	2.60E-4		
		Sulfates	2.60E-4		

f_{er}, has units of [cases/(yr-person-µg/m³)] for morbidity, and [YOLL/(yr-person-µg/m³)] for mortality

PAUL

Life Cycle Analysis - LCA (nuclear energy chain)

The impact pathway approach (including LCA)

Mortality Based on Impact Pathway Approach

Social: Years of Life Lost - YOLL (2050)

Source: Friedrich & Preiss, 2008

PAUL SCHERRER INSTITUT

SEVERE ACCIDENT RISKS

Stefan Hirschberg, Laboratory for Energy Systems Analysis, Energy Divisions

Overview of Accidents in the Energy Sector

ESREL 2017, Portoroz, 18-23 June 2017

Stefan Hirschberg, Laboratory for Energy Systems Analysis, Energy Divisions

Severe Accident Definitions

Consequence indicator	ENSAD	Sigma	EM-DAT	NatCat	WOAD
Fatalities	≥ 5	\geq 20 (dead or missing)	≥ 10	> 20	≥1
Injured persons	≥ 10	\geq 50	aff.	-	-
Evacuees	≥ 200	\geq 2000 (homeless)	aff.	-	-
Extensive ban on consumption of food	yes	-	-	-	-
Release of hydrocarbons	≥ 10000 t	-	-	-	\geq 1000 t
Enforced clean up of land and water area	\geq 25 km ²	-	-	-	-
Economic loss	\geq 5 million USD(2000)	\geq 82.2 million USD(2007)	-	> 50 million USD (2007)	-

Sigma: sigma insurance research (Swiss Re)

EM-DAT: The International Emergency Disasters Database (Centre for Research on the Epidemiology of Disasters, CRED)

NatCat: Natural Catastrophes Service (Munich Re)

WOAD: Worldwide Offshore Accident Databank (Det Norske Veritas, DNV)

Major Steps in ENSAD Development

Geographic Distribution of Severe Accidents

- **Top 10 countries** accounted for **83% of all fatalities**; countries with 100 to 1000 cumulated fatalities contributed another 15.1%, and remaining countries summed up to only 1.9%.
- **China**: 53343 fatalities; 25772 in coal mine accidents (mostly Shanxi, Henan, Guizhou, Heilongjiang and Hunan); 26000 in Banqiao/Shimantan dam failure (Henan).
- Nigeria: oil chain accounts for over 98% of fatalities; Delta, Lagos, Rivers, Osun and Abia states.
- USA: most fatalities in the Gulf of Mexico area (e.g. LA, TX), where O&G activities are concentrated.

ESREL 2017, Portoroz, 18-23 June 2017

Contributions of stages in the various energy chains

	Coal	Oil	Natural Gas	Hydropower	Nuclear
Exploration and production/ processing	Explosions and fires in coal mines	Well blowouts, accidents on drilling platforms at sea.	Well blowouts, accidents on drilling plat- forms at sea.		
Transportation		Tanker accidents at sea	Pipeline accidents		
Processing / storage		Process acci- dents in refineries and tank farms			
Regional/ local division		Overturning and collisions of tank trucks	Pipeline accidents		
Powerplant or heat production			Process accidents	Overflow or failure of storage dams	Core meltdown with large release of radio- activity
Waste treat- ment/disposal					
	0-5%	5 –15 %	15-30%	30-60%	60-100%

Relative share of accidental fatalities in the stages of various energy chains

Severe accident fatality rates and maximum consequences

Sources: after Burgherr, 2011; Burgherr et al., 2013; Burgherr et al., 2014; Burgherr & Hirschberg, 2014

ESREL 2017, Portoroz, 18-23 June 2017

Stefan Hirschberg, Laboratory for Energy Systems Analysis, Energy Divisions

ESREL 2017, Portoroz, 18-23 June 2017

Stefan Hirschberg, Laboratory for Energy Systems Analysis, Energy Divisions

TERRORIST THREAT

Intentional Attacks on Energy Infrastructure

Stefan Hirschberg, Laboratory for Energy Systems Analysis, Energy Divisions

Terrorist Threat: Methodology

Terrorism risk

Probability that an attack is planned

Probability that it can be implemented

Х

=

x Consequences

Source: Eckle, Cazzoli, Burgherr & Hirschberg, 2010

Х

attack

-Time

-...

-Resources

-Know-How

-Countermeasures

Terrorism risk

Probability that an attack is planned

Historic evidence of attack on similar target

Х

Evidence of terrorist groups targeting a specific country Probability that it can be implemented

=

Detailed analysis of potential

Consequences

Χ

Physical analysis of consequences -Immediate fatalities -Latent fatalities -Land contamination

-...

Source: Eckle, Cazzoli, Burgherr & Hirschberg, 2010

Stefan Hirschberg, Laboratory for Energy Systems Analysis, Energy Divisions

Implementation of risk assessment

Probability that an attack is planned

Probability that it can be implemented

Consequences

Initiator

Groups

Supplies

Weapons

Means of delivery

Detection

Countermeasures

Implementation

Consequences

- 1. Quantify probability for every subissue
- 2. Define uncertainty distribution for sub issues

Source: Eckle, Cazzoli, Burgherr & Hirschberg, 2010

Implementation of risk assessment

Source: Eckle, Cazzoli, Burgherr & Hirschberg, 2010

PAUL SCHERRER INSTITUT

Implementation of risk assessment

Initiator

What is the probability that these supplies can be obtained?

Groups

Supplies

Weapons

Means of delivery

Detection

Countermeasures

Implementation

Consequences

Point value Budget 0.1 Weapons 0.1 Know-How 0.9

Support Communication equipment Transport

0.25

0.25

Uncertainty class unlikely (0-0.2) unlikely (0-0.2) likely (0.8-1)

not very likely (0-0.5) not very likely (0-0.5)

ESREL 2017, Portoroz, 18-23 June 2017

Stefan Hirschberg, Laboratory for Energy Systems Analysis, Energy Divisions

Source: Eckle, Cazzoli, Burgherr & Hirschberg, 2010

Frequency-consequence curves for hype

Source: Eckle, Cazzoli, Burgherr & Hirschberg, 2010

HEALTH RISK COMPARISONS

Example: Comparison between Mortality Impacts of Normal Operation and Severe Accidents **YOLL** = Year of Life Lost

Acute and Chronic/Immediate/Early

Latent

Example: Comparison between Mortality Impact of Normal Operation and Hypothetical Terrorist Threat

Acute and Chronic/Immediate/Early

Example: Comparison between Severe Accidents and Hypothetical Terrorist Threat

Immediate/Early Latent

• General:

- ✓ State-of-the art approaches to comprehensive comparative assessment of the various contributions to health risks of energy systems established and applied
- ✓ Importance of covering full energy chains
- ✓ Dominance of health impacts from normal operation
- ✓ Strong dependence on technologies, location and operational environment

• Normal operation risks:

- ✓ Renewables and nuclear mostly exhibit very good performance with hydro being the best option.
- ✓ Coal ranks mostly worst while performance of natural gas is mixed.
- ✓ Fatality rates due to normal operation are much higher than the corresponding rates due to severe accidents.

• Severe accidents risks:

- ✓ Lowest fatality rates apply to hydro and nuclear with high safety standards in OECD countries.
- ✓ In both cases events with very low frequency can lead to quite extreme consequences.
- ✓ Energy-related accident risks in OECD and EU 27 countries are substantially smaller than in non-OECD countries.

• Terrorist threat risks:

- ✓ Frequency of a successful terrorist attack with very large consequences is of the same order of magnitude as can be expected for a disastrous accident in the respective energy chain.
- ✓ Historic preference of terrorists for fatalities implies lower risk for energy infrastructure compared to soft targets.

• Limitations:

- ✓ Choice of reference technologies and geographical coverage
- ✓ Treatments of health impacts of climate change, morbidity and uncertainties
- ✓ Solar PV and geothermal accident risks
- ✓ Cyber risks
- ✓ Implementation of terrorist risk assessment

Laboratory for Energy Systems Analysis (LEA) http://www.psi.ch/lea stefan.hirschberg@psi.ch

Acknowledgements: Christian Bauer, Peter Burgherr, Eric Cazzoli, Thomas Heck, Matteo Spada, Karin Treyer