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ROADMAP

• Fundamentals:
§ Models, Model Uncertainty and Parameter Uncertainty
§ Modeling Process and Model Uncertainty
§ Model Output Uncertainty

• Operationalization of Model Uncertainty
§ Bayesian and Non-Bayesian based approaches
§ Model performance
§ Model applicability

• Challenges ahead
§ Uncertainty is uncertainty?
§ Multiple models, submodels and dependency
§ Accounting for the unexpected
§ Massive and multidimensional data



FUNDAMENTALS



MODEL ERROR AND MODEL UNCERTAINTY

D =	m	- r



MODEL UNCERTAINTY AND PARAMETER UNCERTAINTY

• Models can be characterized as having a structure (S) and a set of 
parameters (Θ)

• Uncertainty attributed to the values of parameters is commonly 
referred to as "Parameter Uncertainty”

• Uncertainty arising from lack of confidence in model structure or 
alternative structures is commonly referred to as "Model Uncertainty”

x = M (S,Θ)



MODELING PROCESS: MODEL FORM AND PARAMETERS

Enclosure Fire Heat
Release Rate
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nParameter:
• An	aspect	of	the	model	that	
relates	it	to	its	specific	
instances	in	the	next	level	of	
the	modeling	process

• A	parameter	in	the	parent	
model	can	become	a	
structural	element	in	the	
child	model



SOURCES OF MODEL UNCERTAINTY

• Alternative plausible hypotheses for describing the phenomena

• A single model:
§ Generally accepted but not completely validated
§ Conceptually accepted and validated but its implementation is of 

uncertain quality
§ Recognized to only partially cover the relevant aspects of the problem
§ Composed of sub-models of different degrees of accuracy and credibility

• Multiple models, each covering different aspects of the reality

• Surprising events, change of a known pattern



MODEL CREDIBILITY



MODEL OUTPUT UNCERTAINTY

• Uncertainty associated to the difference between the model output 
values and the true values of the quantities of interest (Bjerga, Aven, 
Zio; 2014):

ΔG(X )=G(X )− Z



STRUCTURAL MODEL UNCERTAINTY

• Model output uncertainty results from the combination of two 
components:
§ Structural model uncertainty
§ Parameter uncertainty

• Structural model uncertainty:
§ Fundamentally, model uncertainty is model structural uncertainty
§ It is a source of uncertainty
§ In practice, both sources (model and parameter uncertainties) usually 

get confounded
§ And this is reflected in the model output error



OPERATIONALIZATION



• Available information, context of application, objective of the analysis

DIFFERENT REALITIES - DIFFERENT SOLUTIONS



UNCERTAINTY FACTOR APPROACH

• It introduces a correction factor directly on the predictions provided 
by a single model (Siu and Apostolakis, 1986 and 1992):

• The correction factor translates the modeler’s confidence in the 
model’s M prediction XM about the quantity of interest X

• It allows for the use of a model outside its intended domain of 
application (extrapolation)

• Usually applicable to situations where only one model is available



MODEL AVERAGING

I.	PARK,	“Quantification	of	Multiple	Types	of	Uncertainty	Physics-Based	in	
Simulation,”	PhD	Thesis,	Wright	State	University,	2012

• The set of models should be 
mutually exclusive and 
collectively exhaustive

• The model weights should sum 
up to one

• The collective exhaustiveness 
implies that not only the 
probability attributed to a model 
is interpreted as the probability 
that model Mi is ‘‘correct’’, but 
also the ‘‘correct’’ model should 
necessarily be one of the 
alternate models



BAYESIAN PERSPECTIVE

• In assessing the uncertainty about X, the objective is to ensure that 
the true but unknown value xt falls within some uncertainty range 
characterized by a probability distribution p(x)

• We could settle for a probability distribution given the available 
evidence relevant to the estimation of the unknown X, p(x|IM)

X

xt

Ideal Case

X

p(x|IM)



BAYESIAN ASSESSMENT
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SINGLE MODEL

• Model M provides an estimate u* about an unknown u

• Evidence D about the model M:

• With an appropriate likelihood parameterization:



MODEL UNCERTAINTY QUANTIFICATION IN LIGHT OF 
PERFORMANCE DATA

• D corresponds to the available information about M:
§ Performance data: experimental results and corresponding 

model estimates

• Additive model error:

• Likelihood:

x1
e ,…,xne

x1
* ,…,xn*

Ei = xi
* − xi

t



FIRE HAZARD WITH HOMOGENEOUS PERFORMANCE DATA

• Fire hazard model for estimating cable jacket temperatures. The 
model provides a new estimate of 470 K at 300 seconds

• Homogeneous performance data:



FIRE HAZARD WITH HOMOGENEOUS PERFORMANCE DATA

 Mean = 0.965, StdDv = 0.01499, 5th Percentile=0.9439, 95th Percentile=0.9887

0.
90

6

0.
92

2

0.
93

9

0.
95

5

0.
97

1

0.
98

7

1.
00

3

1.
01

9

1.
03

5

1.
05

1

1.
06

7

1.
08

3

1.
09

9

Bias ( b) of the Model Error
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Mean = 0.085, StdDv = 0.0335, 5th Percentile=0.0286, 95th Percentile=0.1343
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Standard Deviation ( s) of the Model Error
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Mean = 494.2, StdDv = 37.3, 5th Percentile=443.1, 95th Percentile=566.3
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Cable Jacket Temperature (K)

0

100

200

300

400

500

600

700

800

N
o 

of
 o

bs

Percentile Estimate:  
T* = 470K 

1-th  416.6 

5-th 443.2 

10-th 455.9 

20-th 468.6 

35-th 480.6 

50-th 489.7 

65-th 498.7 

80-th 515.9 

90-th 538.4 

95-th 566.5 

99-th 618.3 

 



NON-HOMOGENEOUS PERFORMANCE DATA

 Homogeneous (L): Mean=457.6, Std=15.6, 5th Percentile=437.5, 95th Percentile=479.7
 Non-Homogeneous (R): Mean=474.3, Std=48.8, 5th Percentile=400.4, 95th Percentile=559.4
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1-th  415 .2  372 .8  

5-th  437 .5  400 .7  

10-th  443 .7  416 .6  

20-th  449 .7  434 .9  

35-th  454 .0  453 .0  

50-th  457 .1  470 .5  

65-th  460 .6  488 .9  

80-th  465 .6  511 .9  

90-th  472 .0  536 .4  

95-th  479 .7  559 .4  

99-th  509 .1  608 .7  

 

• Posterior expected distribution:

π(x |x * ,D)∝ L(x * |θ ,x)g(θ |D)dθ
θ
∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
×πo(x)



DEVIATION FROM INTENDED USE



APPLICABILITY OF A MODEL

Point Source 
Fire

Line Source Fire

T(h)

h

Predicting Fire Plume Temperature of a 
Line Source Using Point  Source Model



POINT SOURCE FIRE MODEL X LINE FIRE SOURCE MODEL



LINE FIRE PLUME TEMPERATURE

[ ]bab LL =

La(IM|x)

Lb(IM|x)



CHALLENGES AHEAD



UNCERTAINTY IS UNCERTAINTY?

• Many believe that there is only one kind of uncertainty stemming 
from our lack of knowledge concerning reality

• “Let p0(n|t) be the true distribution of the number of events in [0,t], 
obtained by considering an infinite number of activities similar to the 
one considered” (T. Bjerga et al., 2014)

• When analyzing complex phenomena: 
§ Epistemic – practically reducible (by collecting more data and 

increasing our knowledge of the phenomenon in question) 
§ Aleatory – practically irreducible (due to level of modeling detail, 

limitation of resources, limitation in current state of the art)



ALTERNATIVE MODELS

• Gaps in knowledge about 
relevant phenomena

• Approximations

• Quality of implementation

• This can lead to alternative 
assumptions on model 
structure giving raise to 
multiple models

X

p(x|IM)

X

p(x|IM)

X

p(x|IM)

Pr(x) = f(l 1,l 2,l 3,l 4)

l 1 l 2 l 3 l 4
Uncertain
Variables

Model

Pr(e)Model
Outcome

Pr(x) = f(l 1,l 2,l 3,l 4)

l 1 l 2 l 3 l 4
Uncertain
Variables

Model
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Yellow 
Model/Assumption

Blue 
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SUBMODELS UNCERTAINTY – COMPUTATIONAL CODE

• Model uncertainty in severe accident 
analysis:

§ Probability of best model based on 
Bayesian additive error model

§ Use of performance data

§ Multiple independent submodels

§ Model uncertainty due to multiple 
submodels via BMA

Hoseyni and Pourgol-Mohammad, 2016



DEPENDENCY AMONG MODELS

• Models are likely to share some common theoretical principles as 
they are representations of the same reality

• Models may be subject to same common implementation procedures 
such as mathematical approximations and numerical techniques

• Models may have been conceptualized and implemented by 
individuals sharing the same basic training and knowledge

• As a result of sharing similar modeling processes, models might 
have common structural elements such as similarities in form and 
common sets of parameters
§ They would then share, to some degree, available information sources 

and some of their inputs



HEAT RELEASE RATE

• Heat Release Rate (HRR) in an enclosure fire:

• Copulas based quantification:
§ Likelihood function in terms of the Frank´s copula

§ Assuming multiplicative error:



MODEL UNCERTAINTY IN HEAT RELEASE RATE

• At t = 200s, we have Q1 = 193 kW and Q2 = 347 kW



ACCOUNTING FOR THE UNKNOWN AND UNEXPECTED (I)

• What if our models are out of touch with reality 

• The possibility that due to some unforeseen conditions (upset 
events) the real value could fall totally out of the rage of model 
predictions

• Events associated with changes in natural, socio-economic, and 
political systems:
§ Wars 
§ Sudden change of governments
§ Climate change 
§ ….



ACCOUNTING FOR THE UNKNOWN AND UNEXPECTED (II)

Where:
• “w” : relative frequency of “upset event”
• : posterior distribution of default probability in 

the absence of upsetting events 
• : distribution of default probability in the case of 

occurrence of upset events 
§ Uniform, non-informative

  
′π ( pTrue pEstimate , E) = (1− w) *π ( pTrue pEstimate , E) + w* g( pTrue )

  
π ( pTrue pEstimate , E)

g(pTrue )

Kazemi,	R;	Mosleh,	A.	“Improving	Default	Risk	Prediction	Using	Bayesian	Model	
Uncertainty	Techniques”,	Risk	Analysis,	v.12,	n.11,	2012



Example: Default Probability Uncertainty Distribution for 
2006 (with Effect of Upset Events)



DEEP LEARNING BASED PHM

• Deep learning has attracted tremendous attention from researchers 
in fields such as physics, biology, and manufacturing, to name a few 
(Baldi et al., 2014; Anjos et al., 2015; Bergmann et al., 2014)

• It has recently been introduced in reliability
§ Diagnosis (Droguett et al., 2017; Zhou et al., 2017)
§ Prognosis (Babu et al., 2016)

Undamaged

Inner	Race

Outer	Race
Outer	Race
Inner	Race
Outer	Race

Outer	Race



DRAWBACKS OF STANDARD DEEP LEARNING

• Compute point estimates

• Deep NNs make overly confident decisions about the correct class, 
prediction or action

• Deep NNs are prone to overfitting

• No uncertainty quantification
§ Serious limitation for decision making in critical applications such as 

safety, medical



BAYESIAN NEURAL NETWORKS AND DROPOUT

• Not scalable for modern applications and massive data sets

• Dropout:
§ Empirical technique used to avoid overfitting
§ It multiplies hidden activations by Bernoulli distributed random 

variables which take the value 1 with probability p and 0 otherwise
§ Randomly "drop out" hidden units and their connections during training 

time to prevents hidden units from co-adapting too much

Srivastava,	Hinton,	Krizhevsky,	Sutskever,	Salakhutdinov.
Dropout:	A	Simple	Way	to	Prevent	Neural	Networks	from	Overfitting,
J.	Machine	Learning	Research	(2014)



BAYESIAN DEEP LEARNING WITH MC DROPOUT*

• Requires applying dropout at every weight layer at test time

• For input x* the predictive distribution for output y* is:

• MC Dropout averages over N forward passes through the network at 
test time

• MC Dropout corresponds to model averaging
§ Results in estimation of the model output uncertainty
§ Model uncertainty and parameter uncertainty are comingled

*Y.	Gal,	Z.	Ghahramani.	Dropout	as	a	Bayesian	Approximation:	Representing	Model	Uncertainty	in	Deep	Learning.	Proceedings	of	the	33rd	International	
Conference	on	Machine	Learning,	New	York,	NY,	USA,	2016

q( y* |x * )= p( y* |x * ,ω )⋅q(ω )dω∫



CONCLUSIONS (I)

• Risk assessments are often model-based 

• Not taking into account model uncertainty can underestimate the 
amount of uncertainty

• Understanding the fundamentals is a must
§ Research efforts are needed to explore fundamentals
§ Help in developing better quantification methods



CONCLUSIONS (II)

• Operationalization of model uncertainty poses various challenges:
§ Multiple and dependent models
§ Time varying dependences
§ Effective ways to disentangle model and parameter uncertainties
§ Submodels, computer codes
§ Bayesian approaches are usually too expensive
§ Explore other alternatives for model uncertainty representation (e.g., 

evidence theory)
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