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ROADMAP

* Fundamentals:
= Models, Model Uncertainty and Parameter Uncertainty
= Modeling Process and Model Uncertainty
= Model Output Uncertainty

* Operationalization of Model Uncertainty
= Bayesian and Non-Bayesian based approaches
= Model performance
= Model applicability

* Challenges ahead
= Uncertainty is uncertainty?
= Multiple models, submodels and dependency
= Accounting for the unexpected
= Massive and multidimensional data
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FUNDAMENTALS
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MODEL ERROR AND MODEL UNCERTAINTY
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MODEL UNCERTAINTY AND PARAMETER UNCERTAINTY

* Models can be characterized as having a structure (S) and a set of
parameters (O)

x=M(S,0)

* Uncertainty attributed to the values of parameters is commonly
referred to as "Parameter Uncertainty”

* Uncertainty arising from lack of confidence in model structure or
alternative structures is commonly referred to as "Model Uncertainty”




MODELING PROCESS: MODEL FORM AND PARAMETERS

Enclosure Fire Heat
Release Rate
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SOURCES OF MODEL UNCERTAINTY

* Alternative plausible hypotheses for describing the phenomena

* A single model:
= Generally accepted but not completely validated

= Conceptually accepted and validated but its implementation is of
uncertain quality

= Recognized to only partially cover the relevant aspects of the problem
= Composed of sub-models of different degrees of accuracy and credibility

* Multiple models, each covering different aspects of the reality

* Surprising events, change of a known pattern J
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MODEL CREDIBILITY
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MODEL OUTPUT UNCERTAINTY

* Uncertainty associated to the difference between the model output
values and the true values of the quantities of interest (Bjerga, Aven,
Zio; 2014):

AG(X)=G(X)-Z




STRUCTURAL MODEL UNCERTAINTY

* Model output uncertainty results from the combination of two
components:

= Structural model uncertainty
= Parameter uncertainty

* Structural model uncertainty:
= Fundamentally, model uncertainty is model structural uncertainty
= |t is a source of uncertainty

= |n practice, both sources (model and parameter uncertainties) usually
get confounded

= And this is reflected in the model output error
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OPERATIONALIZATION
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DIFFERENT REALITIES - DIFFERENT SOLUTIONS

* Available information, context of application, objective of the analysis
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UNCERTAINTY FACTOR APPROACH

* It introduces a correction factor directly on the predictions provided
by a single model (Siu and Apostolakis, 1986 and 1992):

X=Xy—-§, X =Xu/én

* The correction factor translates the modeler’s confidence in the
model's M prediction X, about the quantity of interest X

AEnE) = ]Af(fmlA)W(AIE)dA

* |t allows for the use of a model outside its intended domain of
application (extrapolation)

* Usually applicable to situations where only one model is available




MODEL AVERAGING
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I. PARK, “Quantification of Multiple Types of Uncertainty Physics-Based in
Simulation,” PhD Thesis, Wright State University, 2012

* The set of models should be

mutually exclusive and
collectively exhaustive

The model weights should sum
up to one

The collective exhaustiveness
implies that not only the
probability attributed to a model
is interpreted as the probability
that model M, is “correct”, but
also the “correct” model should
necessarily be one of the
alternate models
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BAYESIAN PERSPECTIVE

* In assessing the uncertainty about X, the objective is to ensure that
the true but unknown value x; falls within some uncertainty range
characterized by a probability distribution 7z(x)

* WWe could settle for a probability distribution given the available
evidence relevant to the estimation of the unknown X, =(x|/IM)

|deal Case m(x|IM)
X, >
>

X




BAYESIAN ASSESSMENT

- L(IM]x)m(x)
| 1M)= L (1M x) g (x ) dix

IM = (IM;, IM,, ..., IM,, )

Model Information
Estimate about Model




SINGLE MODEL

* Model M provides an estimate u™ about an unknown u

 Evidence D about the model M:
L(u* | D, u)m,(u)
/ L(u* | D, u)m,(u) du

w(u|u*, D) =

* With an appropriate likelihood parameterization:

[ L 16.un(@1 D) do | 7o
n(u|u*, D) — L7¢

/u fL(u*IQ, w)m (0| D)do | w,(u) du

0




MODEL UNCERTAINTY QUANTIFICATION IN LIGHT OF
PERFORMANCE DATA

* D corresponds to the available information about M:

= Performance data: experlmental results x ,x"j and corresponding
model estimates x_, xn

* Additive model error:

* Likelihood:
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FIRE HAZARD WITH HOMOGENEOUS PERFORMANCE DATA

* Fire hazard model for estimating cable jacket temperatures. The
model provides a new estimate of 470 K at 300 seconds

* Homogeneous performance data:

Cable Jacket Temperature (K)
Time (sec) Experimental Result Model Predictions
(T*) , .
T; I;/T;
60 360 375 1.042
180 425 430 1.012
300 455 470 1.033
430 505 500 0.990
720 575 520 0.904
900 575 500 0.870




Mean = 0.965, StdDv = 0.01499, 5th Percentile=0.9439, 95th Percentile=0.9887

FIRE HAZARD WITH HOMOGENEOUS PERFORMANCE DATA
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NON-HOMOGENEOUS PERFORMANCE DATA

* Posterior expected distribution:

Homogeneous (L): Mean=457.6, Std=15.6, 5th Percentile=437.5, 95th Percentile=479.7
Non-Homogeneous (R): Mean=474.3, Std=48.8, 5th Percentile=400.4, 95th Percentile=559.4
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DEVIATION FROM INTENDED USE

Model Applicability

Contexts
o versus 3

to Context
Intended Use, -
F - Explicit
unction, or Assumptions
Application P
Included Excluded Surrogate
Phenomena Phenomena Phenomena
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APPLICABILITY OF A MODEL

P_Oi”t Source Line Source Fire
Fire

Predicting Fire Plume Temperature of a
Line Source Using Point Source Model




POINT SOURCE FIRE MODEL X LINE FIRE SOURCE MODEL

Applicability of the
Point Source Plume
Model to Line Fire

Geomet Ventilation Fire Plume
Y Type Characteristics Characteristics
- . . Smoke-
Ceiling Floor Area Height F'.".! Intensity Fire Type Obstructions Layer
Type Position Effects

oint Source
Fire
(context o)
versus
Line Fire
(context B)
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LINE FIRE PLUME TEMPERATURE
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CHALLENGES AHEAD
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UNCERTAINTY IS UNCERTAINTY?

* Many believe that there is only one kind of uncertainty stemming
from our lack of knowledge concerning reality

* “Let py(n|t) be the true distribution of the number of events in [0,1],
obtained by considering an infinite number of activities similar to the
one considered” (T. Bjerga et al., 2014)

* When analyzing complex phenomena:

= Epistemic — practically reducible (by collecting more data and
increasing our knowledge of the phenomenon in question)

= Aleatory — practically irreducible (due to level of modeling detaill,
limitation of resources, limitation in current state of the art)
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ALTERNATIVE MODELS

* Gaps in knowledge about

relevant phenomena
7(X|IM)

* Approximations

N\
P

TC(X“M) TC(X“M)
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Model Pr(x) = f(h A h 50 ,) Prix) = 102 p2504) assumptlons on mOdel
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SUBMODELS UNCERTAINTY — COMPUTATIONAL CODE

.............................................

Phase 1

Phase 3

........

Prior Posterior
Probability Probability
Py(M,) P(M,)
P,(M,) PM,)
P.M) PM)

! )
Information about

Model Performance: —
IET, SET, CET

.....................

* Model uncertainty in severe accident
analysis:

Probability of best model based on
Bayesian additive error model

Use of performance data

=

8

5
]

Multiple independent submodels

Model uncertainty due to multiple
submodels via BMA

Phase 2

.....................

Hoseyni and Pourgol-Mohammad, 2016




DEPENDENCY AMONG MODELS

* Models are likely to share some common theoretical principles as
they are representations of the same reality

* Models may be subject to same common implementation procedures
such as mathematical approximations and numerical techniques

* Models may have been conceptualized and implemented by
individuals sharing the same basic training and knowledge

* As a result of sharing similar modeling processes, models might
have common structural elements such as similarities in form and
common sets of parameters

= They would then share, to some degree, available information sources
and some of their inputs
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HEAT RELEASE RATE

* Heat Release Rate (HRR) in an enclosure fire:

2

Q:Qoe(f_tg) Q=QP(TL

g

* Copulas based quantification:
= Likelihood function in terms of the Frank’s copula

L(Q15Q2|Q) =10ga

= Assuming multiplicative error:

1+(a

a-1

Fi(0,10) 1)(aF2(Q2|Q) ) l)l

ani—(an+lnbi)) 2

1
1 ‘5( c‘
/LO;10) = ’
/76,0,
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MODEL UNCERTAINTY IN HEAT RELEASE RATE

* At t = 200s, we have Q= 193 kW and Q, = 347 kW
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1E-02 3 E-02
9.E-03 |z 102%
—— AY 1+ 3E-02

7=-75% _R;—, \ Independet
7E-03 -

AN 1 2E-02
6 E-03 / 1N ——
5E-03 -/ ] \ N 2E-02
4F-03 +—— \ X
3E-03 A 4+ 1E-02
2E-03 //'— ’ \ —-\\\
1E-03 // I s ) \& i
0.E+00 —-/ i e x . 0.E+00
100 200 300 400 500 600 700
Heat Release Rate (kW)

PDF (-75%)

FACUL

3 TAD DE
CIENCIAS FISICAS
Y MATEMATICAS
NIVERSIDAD DE CHILE



ACCOUNTING FOR THE UNKNOWN AND UNEXPECTED (I)

* What if our models are out of touch with reality

* The possibility that due to some unforeseen conditions (upset
events) the real value could fall totally out of the rage of model
predictions

* Events associated with changes in natural, socio-economic, and
political systems:

= \Wars

= Sudden change of governments
= Climate change




ACCOUNTING FOR THE UNKNOWN AND UNEXPECTED (ll)

n_/(pTrue

pEstimate ,E) — (1 . W) % n_(pTrue

pEstimate ,E) + W * g(mee)

Where:

* “w” : relative frequency of “upset event”

o m(p™|p""",E): posterior distribution of default probability in
the absence of upsetting events

. 3(P™) : distribution of default probability in the case of
occurrence of upset events

= Uniform, non-informative

Kazemi, R; Mosleh, A. “Improving Default Risk Prediction Using Bayesian Model \;‘%’4
Uncertainty Techniques”, Risk Analysis, v.12, n.11, 2012 i
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Example: Default Probability Uncertainty Distribution for

2006 (with Effect of Upset Events)
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DEEP LEARNING BASED PHM

* Deep learning has attracted tremendous attention from researchers
in fields such as physics, biology, and manufacturing, to name a few
(Baldi et al., 2014; Anjos et al., 2015; Bergmann et al., 2014)

* It has recently been introduced in reliability
= Diagnosis (Droguett et al., 2017; Zhou et al., 2017)

DEEP LEARNING APPROACH Why deep learning

Undamaged Errors
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DRAWBACKS OF STANDARD DEEP LEARNING

* Compute point estimates

* Deep NNs make overly confident decisions about the correct class,
prediction or action

* Deep NNs are prone to overfitting

* No uncertainty quantification

= Serious limitation for decision making in critical applications such as
safety, medical




BAYESIAN NEURAL NETWORKS AND DROPOUT

* Not scalable for modern applications and massive data sets

* Dropout:
= Empirical technique used to avoid overfitting

= |t multiplies hidden activations by Bernoulli distributed random
variables which take the value 1 with probability p and 0 otherwise

= Randomly "drop out" hidden units and their connections during training
time to prevents hidden units from co-adapting too much
@ ()

Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov. (b) After aj § crol
Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right
. . An example of a thinned net produced by applying dropout to the network on the left.
J. Machine Learning Research (2014) Crossed wnits have been dropped. Y GOt e Bl cicurtap b
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BAYESIAN DEEP LEARNING WITH MC DROPOUT*

* Requires applying dropout at every weight layer at test time

* For input x* the predictive distribution for output y* is:
x)=[p(y

* MC Dropout averages over N forward passes through the network at
test time

x,0)q(w)dw

q(y

* MC Dropout corresponds to model averaging
= Results in estimation of the model output uncertainty
= Model uncertainty and parameter uncertainty are comingled

*Y. Gal, Z. Ghahramani. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. Proceedings of the 33rd International 7S

Conference on Machine Learning, New York, NY, USA, 2016 y e, BE
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CONCLUSIONS (1)

* Risk assessments are often model-based

* Not taking into account model uncertainty can underestimate the
amount of uncertainty

* Understanding the fundamentals is a must
= Research efforts are needed to explore fundamentals
= Help in developing better quantification methods
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CONCLUSIONS (lI)

* Operationalization of model uncertainty poses various challenges:
= Multiple and dependent models
= Time varying dependences
= Effective ways to disentangle model and parameter uncertainties
= Submodels, computer codes
= Bayesian approaches are usually too expensive

= Explore other alternatives for model uncertainty representation (e.g.,
evidence theory)
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